Small molecule TDP-43 oligomer/aggregation inhibitor, WTX-245, corrects transcriptional dysfunction across multiple mRNAs in a neuronal cell model for ALS

Bochong Li¹, Gustavo Antonio Urrutia², Sarah R Ball¹, Lee Hopkins¹, Alicia Gonzalez Diaz^{1,2}, Siddarth Narasimhan¹, Edward B Lee³, Andrew P Cridland¹

¹ WaveBreak Therapeutics LLC, Boston, USA
² Department of Chemistry, University of Cambridge, UK
³ Department of Pathology and Laboratory Medicine, University of Pennsylvania, USA

Background and Objective

 Aggregation of TDP-43 is a central hallmark of neurodegeneration in ALS and FTD, which leads to nuclear depletion and the disruption of normal mRNA splicing.

 We have developed a cell model that emulates the full spectrum of aggregation pathology and disease biology and is suited for therapeutic translational development.

• Here we evaluate the efficacy of WTX-245, a small molecule TDP-43 nucleation inhibitor, in a neuronal cell assay that recapitulates the core neuropathological features of ALS: nuclear TDP-43 depletion, cytoplasmic aggregation, and mRNA transcriptional dysfunction.

WaveBreak's proprietary TDP-43 cell assay

WaveBreak has pioneered the development of a neuronal model that uses proprietary, tag free TDP-43 amyloid fibrils to seed aggregation in our TDP-43 cytoplasmic aggregation neuroblastoma cell assay (T43CA).

I. The seeded cell assay induces TDP-43 aggregation in the cytoplasm and induces loss of nuclear TDP-43

Large aggregates 600 600 1000 100 100 100 100 100 100 100 100

II. The seeded cells exhibit robust formation of TDP-43 aggregates that reproduce the morphology observed in patient samples

III. Neuronal mRNA transcription is disrupted with the onset of TDP-43 aggregation

IV. Mitochondrial function is rapidly compromised in the seeded cells

Aggregation-driven loss of correctly spliced mRNAs

$\begin{array}{c} \text{UNC13A} \\ \text{UNC13A} \\$

Aggregation-driven enrichment of mis-spliced mRNAs

WTX-245 inhibits TDP-43 aggregation, restores healthy mRNA transcription and reduces mis-splicing

Conclusions

 To support the development of a new class of TDP-43 therapeutics, we have developed a proprietary seeded neuronal cell assay that recapitulates TDP-43 pathology: aggregation, neuronal depletion, mRNA mis-splicing, and metabolic dysregulation.

Methods: SH-SY5Y cell line treated with 0.9 uM TDP43 seeds +/- WTX-245. Data represent the mean \pm SD. * P<0.05 ** P<0.01 versus vehicletreated. Ordinary one-way ANOVA, Šídák's multiple comparisons test. High content imaging was performed at 40 h time point using Opera Phenix microscope. Images were analyzed using Opera Harmony software. Aggregates were selected using a pre-trained algorithm.

Methods: qPCR performed 72 hours after seeding. Data represent the mean \pm SD. Normalised to seed treated control. Reduced mis-spliced transcripts, coincident with a significant reduction of TDP-43 aggregates. Dose-dependent trend for rescuing healthy mRNA transcripts.

 WTX-245 is a small molecule designed to directly inhibit the TDP-43 nucleation mechanisms that are disease-specific and initiate the cascade of molecular events leading to the formation of protein aggregates.

 WTX-245 inhibits TDP-43 aggregation, restores healthy mRNA transcription and reduces missplicing in this TDP-43 seeded neuronal cell assay.